18-421/623: Analog Integrated Circuit Design, Fall 2019

Units: 12

Course Description:

Some form of analog circuit design is a critical step in the creation of every modern IC. First and foremost, analog circuits act as the interface between digital systems and the real world. They act to amplify and filter analog signals, and to convert signals from analog to digital and back again. In addition, high performance digital cell design (either high speed or low power) also invokes significant analog circuit design issues. The goal of this course is to teach students some of the methods used in the design and analysis of analog integrated circuits, to illustrate how one approaches design problems in general, and to expose students to a broad cross-section of important analog circuit topologies. The course will focus on learning design through carrying out design projects. Design and implementation details of wide-band amplifiers, operational amplifiers, filters and basic data converters will be covered. Example topics to be covered include transistor large- and small-signal device models, small-signal characteristics of transistor-based amplifiers, large-signal amplifier characteristics and nonidealities, operational amplifier design, basic feedback amplifier stability analysis and compensation, and comparator design. The course will focus primarily on analog CMOS, but some aspects of BJT design will be discussed. Although students in 18-623 will share Lectures and Recitations with students in 18-421, students in 18-623 will receive distinct homework assignments, distinct design problems, and distinct exams from the ones given to students in 18-421 and will be graded on a separate curve from students taking 18-421.

18-320: Microelectronic Circuits, Spring 2020

Units: 12

Course Description:

18-320 introduces students to the fundamentals of microelectronic circuits. The course will emphasize the analysis and design of basic analog and digital integrated circuits in preparation for further study in analog, digital, mixed-signal, and radio-frequency integrated circuit design. Additionally, students will learn to design and analyze microelectronic circuits using industry standard computer aided design (CAD) software. Topics to be covered include:

  • MOSFET fabrication and layout
  • MOSFET models for analog and digital design
  • Analysis and design of digital CMOS logic gates
  • Analysis and design of clocked storage elements (e.g., flip-flops, latches, memory cells)
  • Delay optimization of digital circuits
  • Circuit topologies for arithmetic and logical functional units
  • Analysis and design of single-stage MOS amplifiers
  • Frequency response characteristics of single-stage amplifiers
  • Differential amplifiers and simple operational amplifiers
  • Analog filters using operational amplifiers

The course includes a lab component which will give students hands-on experience in the design and implementation of analog and digital circuits. Labs will employ both design using discrete, SSI, and MSI parts, as well as using CAD design tools.