Polymer filters for ultraviolet-excited integrated fluorescence sensing

Polymer filters for ultraviolet-excited integrated fluorescence sensing

M. Dandin, P. Abshire, and E. Smela, “Polymer filters for ultraviolet-excited integrated fluorescence sensing,” J. Micromechanics Microengineering, vol. 22, no. 9, p. 095018, Sep. 2012. [Online Article]
Polymer filters for ultraviolet-excited integrated fluorescence sensing

Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2′-hydroxy-5′-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 μm thick that exhibit high ultraviolet rejection (nearly −40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light.